Nonparametric relative regression under random censorship model
نویسندگان
چکیده
منابع مشابه
Testing additivity in nonparametric regression under random censorship
In this paper, we are concerned with nonparametric estimation of the multivariate regression function in the presence of right censored data. More precisely, we propose a statistic that is shown to be asymptotically normally distributed under the additive assumption, and that could be used to test for additivity in the censored regression setting.
متن کاملExponential semiparametric regression models under random censorship∗
Using the weighted maximum likelihood method, we propose a consistent estimation of parametric portion and nonparametric portion in exponential semiparametric regression models under random censorship. A small Monte Carlo study is carried out to examine the proposed estimation method.
متن کاملNonparametric Regression Estimation under Kernel Polynomial Model for Unstructured Data
The nonparametric estimation(NE) of kernel polynomial regression (KPR) model is a powerful tool to visually depict the effect of covariates on response variable, when there exist unstructured and heterogeneous data. In this paper we introduce KPR model that is the mixture of nonparametric regression models with bootstrap algorithm, which is considered in a heterogeneous and unstructured framewo...
متن کاملNonparametric Test for Checking Lack-of-Fit of Quantile Regression Model under Random Censoring
Recently, considerable attention has been devoted to quantile regression under random censoring in both statistical and econometrical literature yet little has been done on the important problem of model checking. This paper proposes a nonparametric test for checking the lack-of-fit of the quantile function of the survival time given the covariates when the survival time is subjected to random ...
متن کاملComposite Quantile Regression for Nonparametric Model with Random Censored Data
The composite quantile regression should provide estimation efficiency gain over a single quantile regression. In this paper, we extend composite quantile regression to nonparametric model with random censored data. The asymptotic normality of the proposed estimator is established. The proposed methods are applied to the lung cancer data. Extensive simulations are reported, showing that the pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics & Probability Letters
سال: 2019
ISSN: 0167-7152
DOI: 10.1016/j.spl.2019.03.019